Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Appl Microbiol Biotechnol ; 107(16): 5269-5279, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395748

RESUMO

Diphenyl ether herbicides, typical globally used herbicides, threaten the agricultural environment and the sensitive crops. The microbial degradation pathways of diphenyl ether herbicides are well studied, but the nitroreduction of diphenyl ether herbicides by purified enzymes is still unclear. Here, the gene dnrA, encoding a nitroreductase DnrA responsible for the reduction of nitro to amino groups, was identified from the strain Bacillus sp. Za. DnrA had a broad substrate spectrum, and the Km values of DnrA for different diphenyl ether herbicides were 20.67 µM (fomesafen), 23.64 µM (bifenox), 26.19 µM (fluoroglycofen), 28.24 µM (acifluorfen), and 36.32 µM (lactofen). DnrA also mitigated the growth inhibition effect on cucumber and sorghum through nitroreduction. Molecular docking revealed the mechanisms of the compounds fomesafen, bifenox, fluoroglycofen, lactofen, and acifluorfen with DnrA. Fomesafen showed higher affinities and lower binding energy values for DnrA, and residue Arg244 affected the affinity between diphenyl ether herbicides and DnrA. This research provides new genetic resources and insights into the microbial remediation of diphenyl ether herbicide-contaminated environments. KEY POINTS: • Nitroreductase DnrA transforms the nitro group of diphenyl ether herbicides. • Nitroreductase DnrA reduces the toxicity of diphenyl ether herbicides. • The distance between Arg244 and the herbicides is related to catalytic efficiency.


Assuntos
Bacillus , Herbicidas , Bacillus/genética , Bacillus/metabolismo , Herbicidas/metabolismo , Simulação de Acoplamento Molecular , Éteres Difenil Halogenados , Biotransformação , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/metabolismo
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123032, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37356386

RESUMO

Overexpressed nitroreductase (NTR) is often utilized to evaluate the hypoxic degree in tumor tissues, thus it is of great importance to develop high selective and efficient optical method to detect NTR. The dynamic fusion and function of lysosome promoted us to explore the possible appearance of NTR inside this organelle and to probe its behavior in a cellular context. In this work, a ratiometric fluorescent probe based on an extended π-π conjugation of a triphenylamine unit was designed for NTR detection and lysosomes imaging. The dual-emission mechanism of the probe in the presence of catalytic NTR was confirmed by theoretical study. The structure-function relationship between probe and NTR was revealed by docking calculations, suggesting a suitable structural and spatial match of them. The photophysical studies showed the probe had high selectivity, rapid response and a wide pH range towards NTR. MTT assay indicated the probe had low cytotoxicity in both normal (HUVEC) and tumor (MCF-7) cells. Furthermore, the inverse fluorescent imaging results confirmed the probe was NTR-active and exhibited time- and concentration-dependent fluorescence signals. In addition, the relatively high Pearson's correlation coefficient (0.99 in HepG2 and 0.97 in MCF-7 cells, compared to Lyso-Tracker Red) demonstrated the probe had excellent lysosomes colocalization. This study illustrates a ratiometric detection of NTR agent for lysosomes fluorescent imaging, which may provide a novel insight in molecular design.


Assuntos
Corantes Fluorescentes , Lisossomos , Humanos , Corantes Fluorescentes/química , Microscopia de Fluorescência , Linhagem Celular Tumoral , Nitrorredutases/química , Imagem Óptica/métodos
3.
ACS Appl Mater Interfaces ; 15(17): 21198-21209, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37070853

RESUMO

Identifying nitroreductase (NTR) with fluorescent techniques has become a research hotspot, due to its good sensitivity and selectivity toward the early-stage cancer diagnosis and monitoring. Herein, a host-guest reporter (NAQA⊂Zn-MPPB) is successfully achieved by encapsulating the NTR probe NAQA into a new NADH-functioned metal-organic cage Zn-MPPB, which makes the reporter for ultrafast detection of NTR within dozens of seconds in solution. The host-guest strategy fuses the Zn-MPPB and NAQA to form a pseudomolecule material, which changes the reaction process of NTR and NAQA from a double substrates mechanism to a single substrate one, and accelerates the reduction efficiency of NAQA. This advantage make the new host-guest reporter exhibit a linear relationship between emission changes and NTR concentration, and it shows better sensitively toward NTR than that of NAQA. Additionally, the positively charged water-soluble metal-organic cage can encapsulate NAQA in the cavity, promote it to dissolve in an aqueous environment, and facilitate their accumulation into tumor cells. As expected, such host-guest reporter displays a fast and high efficiently imaging capability toward NTR in tumor cells and tumor-bearing mice, and flow cytometry assay is conducted to corroborate the capability as well, implying the considerably potential of host-guest strategy for early tumor diagnosis and treatment.


Assuntos
Corantes Fluorescentes , Neoplasias , Camundongos , Animais , Corantes Fluorescentes/química , Microscopia de Fluorescência , Nitrorredutases/química , Imagem Óptica/métodos
4.
J Biomol Struct Dyn ; 41(10): 4421-4443, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35574601

RESUMO

In the past decade, TB drugs belonging to the nitroimidazole class, pretomanid and delamanid, have been authorised to treat MDR-TB and XDR-TB. With a novel inhibition mechanism and a reduction in the span of treatment, it is now being administered in various combinations. This approach is not the ultimate remedy since the target protein Deazaflavin dependent nitroreductase (Ddn) has a high mutation frequency, and already pretomanid resistant clinical isolates are reported in various studies. Ddn is essential for M.tuberculosis to emerge from hypoxia, and point mutations in critical residues confer resistance to Nitro-imidazoles. Among the pool of available mutants, we have selected seven mutants viz DdnL49P, DdnY65S, DdnS78Y, DdnK79Q, DdnW88R, DdnY133C, and DdnY136S, all of which exhibited resistance to pretomanid. To address this issue, through computational study primarily by MD simulation, we attempted to elucidate these point mutations' impact and investigate the resistance mechanism. Hence, the DdnWT and mutant (MT) complexes were subjected to all-atom molecular dynamics (MD) simulations for 100 ns. Interestingly, we observed the escalation of the distance between cofactor and ligand in some mutants, along with a significant change in ligand conformation relative to the DdnWT. Moreover, we confirmed that mutations rendered ligand instability and were ejected from the binding pocket as a result. In conclusion, the results obtained provide a new structural insight and vital clues for designing novel inhibitors to combat nitroimidazole resistanceCommunicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Nitroimidazóis , Simulação de Dinâmica Molecular , Ligantes , Nitroimidazóis/farmacologia , Nitroimidazóis/química , Nitroimidazóis/metabolismo , Mycobacterium tuberculosis/genética , Mutação , Nitrorredutases/genética , Nitrorredutases/química , Nitrorredutases/metabolismo , Antituberculosos/farmacologia
5.
Mol Biotechnol ; 65(4): 556-569, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36042106

RESUMO

Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min-1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.


Assuntos
Leishmania , Leishmania/genética , Leishmania/metabolismo , NADP/metabolismo , Escherichia coli/metabolismo , Nitrorredutases/genética , Nitrorredutases/química , Cinética
6.
Proteins ; 91(5): 585-592, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36443029

RESUMO

Escherichia coli NfsA and NfsB are founding members of two flavoprotein families that catalyze the oxygen-insensitive reduction of nitroaromatics and quinones by NAD(P)H. This reduction is required for the activity of nitrofuran antibiotics and the enzymes have also been proposed for use with nitroaromatic prodrugs in cancer gene therapy and biocatalysis, but the roles of the proteins in vivo in bacteria are not known. NfsA is NADPH-specific whereas NfsB can also use NADH. The crystal structures of E. coli NfsA and NfsB and several analogs have been determined previously. In our crystal trials, we unexpectedly observed NfsA bound to fumarate. We here present the X-ray structure of the E. coli NfsA-fumarate complex and show that fumarate acts as a weak inhibitor of NfsA but not of NfsB. The structural basis of this differential inhibition is conserved in the two protein families and occurs at fumarate concentrations found in vivo, so impacting the efficacy of these proteins.


Assuntos
Proteínas de Escherichia coli , Nitrofuranos , Escherichia coli/metabolismo , Oxigênio , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Nitrorredutases/química
7.
Angew Chem Int Ed Engl ; 61(50): e202213495, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36263727

RESUMO

Nitroreductase (NTR) is an important biomarker widely used to evaluate the degree of tumor hypoxia. Although a few optical methods have been reported for detecting nitroreductase at low concentration ranges, an effective strategy for nitroreductase monitoring in vivo without limits to the imaging depth is still lacking. Herein, a novel dual-mode NIR fluorescence and 19 F MRI agent, FCy7-NO2 , is proposed for imaging tumor hypoxia. We show that FCy7-NO2 serves as not only a rapid NIR fluorescence enhanced probe for monitoring and bioimaging of nitroreductase in tumors, but also a novel 19 F MR chemical shift-sensitive contrast agent for selectively detecting nitroreductase catalyzed reduction. Notably, integrating two complementary imaging technologies into FCy7-NO2 enables sensitive detection of nitroreductase in a broad concentration range without tissue-depth limit. In general, this agent has a remarkable response to nitroreductase, which provides a promising method for understanding tumor evolution and its physiological role in the hypoxic microenvironment.


Assuntos
Neoplasias , Dióxido de Nitrogênio , Humanos , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos , Nitrorredutases/química , Imagem Óptica/métodos , Neoplasias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microambiente Tumoral
8.
Chem Biol Interact ; 368: 110222, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244406

RESUMO

Gut bacterial nitroreductases are found to be heavily related with the intestinal toxicity of nitroaromatic compounds in food or medicine, which can be converted into mutagenic and enterotoxic nitroso or N-hydroxyl intermediates. Thus, inhibiting the gut microbe-encoded nitroreductases has become an attractive method to reduce the mutagen metabolites in colon and prevent intestinal diseases. In this study, the inhibitory effects of sixteen constituents in Cortex Mori Radicis on two kinds of gut bacterial nitroreductases (EcNfsA and EcNfsB) were evaluated with nitrofurazone (NFZ) as substrate and NADPH as electron donor. The results clearly demonstrated that four flavonoids including kuwanon G, kuwanon A, sanggenol A and kuwanon C showed dual inhibition on both EcNfsA and EcNfsB mediated NFZ reduction; morusin, morin, and sanggenone C were strong inhibitors towards EcNfsA; kuwanon H and kuwanon E exhibited effective inhibition on EcNfsB. Further inhibition kinetic analysis and molecular docking simulations displayed that all inhibitors above suppressed both EcNfsA and EcNfsB activities in competitive manners, except non-competitive inhibition of morin on EcNfsA and non-competitive inhibition of kuwanon C on EcNfsB, respectively. Taking together, these findings revealed that most flavonoids in Cortex Mori Radicis presented effective inhibition on gut microbial nitroreductases, suggesting that Cortex Mori Radicis might be a promising candidate for ameliorating nitroreductases mediated intestinal mutagenicity.


Assuntos
Flavonoides , Nitrorredutases , Simulação de Acoplamento Molecular , Cinética , Flavonoides/farmacologia , Flavonoides/química , Nitrorredutases/química , Nitrorredutases/metabolismo
9.
Acta Crystallogr D Struct Biol ; 78(Pt 10): 1273-1282, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189746

RESUMO

The bacterial nitroreductases (NRs) NfsB and NfsA are conserved homodimeric FMN-dependent flavoproteins that are responsible for the reduction of nitroaromatic substrates. Berberine (BBR) is a plant-derived isoquinoline alkaloid with a large conjugated ring system that is widely used in the treatment of various diseases. It was recently found that the gut microbiota convert BBR into dihydroberberine (dhBBR, the absorbable form) mediated by bacterial NRs. The molecular basis for the transformation of BBR by the gut microbiota remains unclear. Here, kinetic studies showed that NfsB from Escherichia coli (EcNfsB), rather than EcNfsA, is responsible for the conversion of BBR to dhBBR in spite of a low reaction rate. The crystal structure of the EcNfsB-BBR complex showed that BBR binds into the active pocket at the dimer interface, and its large conjugated plane stacks above the plane of the FMN cofactor in a nearly parallel orientation. BBR is mainly stabilized by π-stacking interactions with both neighboring aromatic residues and FMN. Structure-based mutagenesis studies further revealed that the highly conserved Phe70 and Phe199 are important residues for the conversion of BBR. The structure revealed that the C6 atom of BBR (which receives the hydride) is ∼7.5 Šfrom the N5 atom of FMN (which donates the hydride), which is too distant for hydride transfer. Notably, several well ordered water molecules make hydrogen-bond/van der Waals contacts with the N1 atom of BBR in the active site, which probably donate protons in conjunction with electron transfer from FMN. The structure-function studies revealed the mechanism for the recognition and binding of BBR by bacterial NRs and may help to understand the conversion of BBR by the gut microbiota.


Assuntos
Berberina , Proteínas de Escherichia coli , Bactérias/metabolismo , Carbono-Oxigênio Ligases/metabolismo , Escherichia coli/metabolismo , Mononucleotídeo de Flavina/química , Flavoproteínas/metabolismo , Isoquinolinas , Cinética , Medicina Tradicional , Nitrorredutases/química , Nitrorredutases/metabolismo , Prótons , Água
10.
Int J Biol Macromol ; 221: 891-899, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36100001

RESUMO

Due to its severe burden and geographic distribution, Chagas disease (CD) has a significant social and economic impact on low-income countries. Benznidazole and nifurtimox are currently the only drugs available for CD. These are prodrugs activated by reducing the nitro group, a reaction catalyzed by nitroreductase type I enzyme from Trypanosoma cruzi (TcNTR), with no homolog in the human host. The three-dimensional structure of TcNTR, and the molecular and chemical bases of the selective activation of nitro drugs, are still unknown. To understand the role of TcNTR in the basic parasite biology, investigate its potential as a drug target, and contribute to the fight against neglected tropical diseases, a combined approach using multiple biophysical and biochemical methods together with in silico studies was employed in the characterization of TcNTR. For the first time, the interaction of TcNTR with membranes was demonstrated, with a preference for those containing cardiolipin, a unique dimeric phospholipid that exists almost exclusively in the inner mitochondrial membrane in eukaryotic cells. Prediction of TcNTR's 3D structure suggests that a 23-residue long insertion (199 to 222), absent in the homologous bacterial protein and identified as conserved in protozoan sequences, mediates enzyme specificity, and is involved in protein-membrane interaction.


Assuntos
Doença de Chagas , Nitroimidazóis , Pró-Fármacos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Nitroimidazóis/metabolismo , Nitroimidazóis/uso terapêutico , Nifurtimox/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Nitrorredutases/química , Pró-Fármacos/uso terapêutico , Tripanossomicidas/química
11.
FEBS Lett ; 596(18): 2425-2440, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35648111

RESUMO

Nitroreductases activate nitroaromatic antibiotics and cancer prodrugs to cytotoxic hydroxylamines and reduce quinones to quinols. Using steady-state and stopped-flow kinetics, we show that the Escherichia coli nitroreductase NfsA is 20-50 fold more active with NADPH than with NADH and that product release may be rate-limiting. The crystal structure of NfsA with NADP+ shows that a mobile loop forms a phosphate-binding pocket. The nicotinamide ring and nicotinamide ribose are mobile, as confirmed in molecular dynamics (MD) simulations. We present a model of NADPH bound to NfsA. Only one NADP+ is seen bound to the NfsA dimers, and MD simulations show that binding of a second NADP(H) cofactor is unfavourable, suggesting that NfsA and other members of this protein superfamily may have a half-of-sites mechanism.


Assuntos
Proteínas de Escherichia coli , Pró-Fármacos , Antibacterianos , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroquinonas , Hidroxilaminas , Cinética , NAD/metabolismo , NADP/metabolismo , Niacinamida , Nitrorredutases/química , Nitrorredutases/metabolismo , Fosfatos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Quinonas
12.
Nat Methods ; 19(2): 205-215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132245

RESUMO

Transgenic expression of bacterial nitroreductase (NTR) enzymes sensitizes eukaryotic cells to prodrugs such as metronidazole (MTZ), enabling selective cell-ablation paradigms that have expanded studies of cell function and regeneration in vertebrates. However, first-generation NTRs required confoundingly toxic prodrug treatments to achieve effective cell ablation, and some cell types have proven resistant. Here we used rational engineering and cross-species screening to develop an NTR variant, NTR 2.0, which exhibits ~100-fold improvement in MTZ-mediated cell-specific ablation efficacy, eliminating the need for near-toxic prodrug treatment regimens. NTR 2.0 therefore enables sustained cell-loss paradigms and ablation of previously resistant cell types. These properties permit enhanced interrogations of cell function, extended challenges to the regenerative capacities of discrete stem cell niches, and novel modeling of chronic degenerative diseases. Accordingly, we have created a series of bipartite transgenic reporter/effector resources to facilitate dissemination of NTR 2.0 to the research community.


Assuntos
Metronidazol/farmacologia , Nitrorredutases/metabolismo , Pró-Fármacos/química , Animais , Animais Geneticamente Modificados , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Metronidazol/farmacocinética , Nitrorredutases/química , Nitrorredutases/genética , Pró-Fármacos/farmacologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Vibrio/enzimologia , Peixe-Zebra/genética
13.
Microbiol Spectr ; 10(2): e0013922, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35195438

RESUMO

Phylogenetically diverse bacteria can carry out chloramphenicol reduction, but only a single enzyme has been described that efficiently catalyzes this reaction, the NfsB nitroreductase from Haemophilus influenzae strain KW20. Here, we tested the hypothesis that some NfsB homologs function as housekeeping enzymes with the potential to become chloramphenicol resistance enzymes. We found that expression of H. influenzae and Neisseria spp. nfsB genes, but not Pasteurella multocida nfsB, allows Escherichia coli to resist chloramphenicol by nitroreduction. Mass spectrometric analysis confirmed that purified H. influenzae and N. meningitides NfsB enzymes reduce chloramphenicol to amino-chloramphenicol, while kinetics analyses supported the hypothesis that chloramphenicol reduction is a secondary activity. We combined these findings with atomic resolution structures of multiple chloramphenicol-reducing NfsB enzymes to identify potential key substrate-binding pocket residues. Our work expands the chloramphenicol reductase family and provides mechanistic insights into how a housekeeping enzyme might confer antibiotic resistance. IMPORTANCE The question of how new enzyme activities evolve is of great biological interest and, in the context of antibiotic resistance, of great medical importance. Here, we have tested the hypothesis that new antibiotic resistance mechanisms may evolve from promiscuous housekeeping enzymes that have antibiotic modification side activities. Previous work identified a Haemophilus influenzae nitroreductase housekeeping enzyme that has the ability to give Escherichia coli resistance to the antibiotic chloramphenicol by nitroreduction. Herein, we extend this work to enzymes from other Haemophilus and Neisseria strains to discover that expression of chloramphenicol reductases is sufficient to confer chloramphenicol resistance to Es. coli, confirming that chloramphenicol reductase activity is widespread across this nitroreductase family. By solving the high-resolution crystal structures of active chloramphenicol reductases, we identified residues important for this activity. Our work supports the hypothesis that housekeeping proteins possessing multiple activities can evolve into antibiotic resistance enzymes.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/metabolismo , Oxirredutases/genética
14.
J Biol Chem ; 297(4): 101143, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473996

RESUMO

Nitroreductases are emerging as attractive bioremediation enzymes, with substrate promiscuity toward both natural and synthetic compounds. Recently, the nitroreductase NfnB from Sphingopyxis sp. strain HMH exhibited metabolic activity for dinitroaniline herbicides including butralin and pendimethalin, triggering the initial steps of their degradation and detoxification. However, the determinants of the specificity of NfnB for these herbicides are unknown. In this study, we performed structural and biochemical analyses of NfnB to decipher its substrate specificity. The homodimer NfnB is a member of the PnbA subgroup of the nitroreductase family. Each monomer displays a central α + ß fold for the core domain, with a protruding middle region and an extended C-terminal region. The protruding middle region of Val75-Tyr129 represents a structural extension that is a common feature to members of the PnbA subgroup and functions as an opening wall connecting the coenzyme FMN-binding site to the surface, therefore serving as a substrate binding site. We performed mutational, kinetic, and structural analyses of mutant enzymes and found that Tyr88 in the middle region plays a pivotal role in substrate specificity by determining the dimensions of the wall opening. The mutation of Tyr88 to phenylalanine or alanine caused significant changes in substrate selectivity toward bulkier dinitroaniline herbicides such as oryzalin and isopropalin without compromising its activity. These results provide a framework to modify the substrate specificity of nitroreductase in the PnbA subgroup, which has been a challenging issue for its biotechnological and bioremediation applications.


Assuntos
Compostos de Anilina/química , Dinitrobenzenos/química , Herbicidas/química , Nitrorredutases/química , Sphingomonadaceae/enzimologia , Sulfanilamidas/química , Sítios de Ligação , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Chem Biol Drug Des ; 98(5): 751-761, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314572

RESUMO

This study demonstrated the tracking of ulcerative colitis, which is considered a stressful immune disease. Although there are many ways to test for this disease including dependence on gases, dyes, and painful anal endoscopy, these treatment modalities have many disadvantages. Hence, it is the utmost need of time to discover new methods to detect this chronic immune disease and to avoid the defects of traditional methodologies. Sulfasalazine (SSD) was labeled with iodine-131 (half-life: 8 days, Energy: 971 keV) under optimum reaction conditions including the amount of reducing agent, pH factor, chloramine-T (Ch-T) amount, and incubation period. Characterization was performed using 1 H/ 13 C-NMR, ESI-MS, and HPLC (UV/ Radio) techniques. The biodistribution study was performed in normal and ulcerative mice models, and in silico molecular docking study was performed to evaluate the possible mechanism of action to target peroxisome proliferator-activated receptor gamma (PPARγ). The high radiolabeling yield of [131 I]-sulfasalazine ([131 I]-SSD) was achieved ≥90% through the direct labeling method with radioactive iodine-131 in the presence of chloramine-T (100 µg). The radiotracer [131 I]-SSD was observed to be stable in normal saline and freshly eluted serum up to 12 hr at ambient temperature (37℃ ± 2℃). The radiotracer [131 I]-SSD showed the highest uptake in the targeted organ (i.e., ulcerative colon) which was observed to be ≥75% injected dose per gram (% ID/g) organ for 24 hr postinjection (p.i). Furthermore, in silico data collected from molecular modeling analysis of SSD and [131 I]-SSD with antimicrobial protein (PDB code: 3KEG) and peroxisome proliferator-activated receptor gamma (PPARγ) (PDB code: 4XTA) showed azoreductase activity and high binding potential for PPAR-γ site, respectively. The results of biological studies obtained in this study enlighten the usefulness of radiotracer [131 I]-SSD as a potential imaging agent for ulcerative colitis.


Assuntos
Colite Ulcerativa/radioterapia , Isótopos de Iodo/química , Sulfassalazina/química , Animais , Cloraminas/química , Defensinas/química , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio , Isótopos de Iodo/farmacologia , Cinética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Nitrorredutases/química , Oxirredução , PPAR gama/metabolismo , Proteínas de Plantas/química , Tomografia por Emissão de Pósitrons , Ligação Proteica , Conformação Proteica , Coloração e Rotulagem , Distribuição Tecidual
17.
Biochem J ; 478(13): 2601-2617, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34142705

RESUMO

NfsA is a dimeric flavoprotein that catalyses the reduction in nitroaromatics and quinones by NADPH. This reduction is required for the activity of nitrofuran antibiotics. The crystal structure of free Escherichia coli NfsA and several homologues have been determined previously, but there is no structure of the enzyme with ligands. We present here crystal structures of oxidised E. coli NfsA in the presence of several ligands, including the antibiotic nitrofurantoin. Nitrofurantoin binds with the furan ring, rather than the nitro group that is reduced, near the N5 of the FMN. Molecular dynamics simulations show that this orientation is only favourable in the oxidised enzyme, while potentiometry suggests that little semiquinone is formed in the free protein. This suggests that the reduction occurs by direct hydride transfer from FMNH- to nitrofurantoin bound in the reverse orientation to that in the crystal structure. We present a model of nitrofurantoin bound to reduced NfsA in a viable hydride transfer orientation. The substrate 1,4-benzoquinone and the product hydroquinone are positioned close to the FMN N5 in the respective crystal structures with NfsA, suitable for reaction, but are mobile within the active site. The structure with a second FMN, bound as a ligand, shows that a mobile loop in the free protein forms a phosphate-binding pocket. NfsA is specific for NADPH and a similar conformational change, forming a phosphate-binding pocket, is likely to also occur with the natural cofactor.


Assuntos
Antibacterianos/metabolismo , Benzoquinonas/metabolismo , Proteínas de Escherichia coli/metabolismo , Mononucleotídeo de Flavina/metabolismo , Nitrofurantoína/metabolismo , Nitrorredutases/metabolismo , Antibacterianos/química , Benzoquinonas/química , Sítios de Ligação/genética , Biocatálise , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mononucleotídeo de Flavina/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , NADP/metabolismo , Nitrofurantoína/química , Nitrorredutases/química , Nitrorredutases/genética , Oxirredução , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
18.
Org Biomol Chem ; 19(12): 2681-2687, 2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33634293

RESUMO

Redox homeostasis is essential for cell function and its disruption is associated with multiple pathologies. Redox balance is largely regulated by the relative concentrations of reduced and oxidized glutathione. In eukaryotic cells, this ratio is different in each cell compartment, and disruption of the mitochondrial redox balance has been specifically linked to metabolic diseases. Here, we report a probe that is selectively activated by endogenous nitroreductases, and releases tributylphosphine to trigger redox stress in mitochondria. Mechanistic studies revealed that, counterintuitively, release of a reducing agent in mitochondria rapidly induced oxidative stress through accumulation of superoxide. This response is mediated by glutathione, suggesting a link between reductive and oxidative stress. Furthermore, mitochondrial redox stress activates a cellular response orchestrated by transcription factor ATF4, which upregulates genes involved in glutathione catabolism.


Assuntos
Materiais Biocompatíveis/metabolismo , Mitocôndrias/metabolismo , Nitrorredutases/metabolismo , Fosfinas/metabolismo , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Células HEK293 , Homeostase , Humanos , Nitrorredutases/química , Oxirredução , Estresse Oxidativo , Fosfinas/síntese química , Fosfinas/química
19.
Folia Microbiol (Praha) ; 66(1): 79-85, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32946071

RESUMO

Heterologously expressed and purified azoreductase enzyme from facultative Klebsiella pneumoniae was used to degrade sulphonated azo dye. Methyl orange (MO) was used as the model dye to study the azo dye decolorization potential of the purified enzyme at different conditions. The enzyme had maximum activity at 40 °C and pH 8.0. The enzyme was observed to be thermo-stable as some enzyme activity was retained even at 80 °C. The apparent kinetic parameters, i.e., appKm and appVmax, for azoreductase using MO as a substrate were found to be 17.18 µM and 0.08/min, respectively. The purified enzyme was able to decolorize approximately 83% of MO (20 µM) within 10 min in the presence of NADH. Thus, efficient decolorization of MO was observed by the purified enzyme. The recombinant enzyme was purified approximately 18-fold with 46% yield at the end of four steps of the purification process. Enzyme was present in a tetrameric structure as confirmed by the volume at which protein was eluted in gel filtration chromatography, and the monomeric molecular mass of enzyme was found to be 23 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The dye degradation efficiency of azoreductase cloned from Klebsiella pneumoniae and purified from recombinant Escherichia coli was observed to be much higher as compared with the efficiencies of the reported azoreductases from other bacterial strains. In the present study, we report the purification and characterization of the azoreductase cloned from Klebsiella pneumoniae and expressed in Escherichia coli.


Assuntos
Compostos Azo/metabolismo , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/enzimologia , Nitrorredutases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biodegradação Ambiental , Corantes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Klebsiella pneumoniae/genética , Peso Molecular , Nitrorredutases/química , Nitrorredutases/genética , Nitrorredutases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Temperatura
20.
Proteins ; 89(5): 483-492, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33289153

RESUMO

Azoreductases are being extensively investigated for their ability to initiate degradation of recalcitrant azo dyes through reduction of azo bonds. There is great interest in studying their diversity, structure, and function to facilitate better understanding and effective application. Current study reports azoreductase enzyme from Bacillus velezensis, which showed 69.5% identity to the Bacillus subtilis azoreductase YhdA. The enzyme was homotetrameric and molecular weight of each subunit was 20 kDa. It decolorized azo dyes with different structures. The Vmax for decolorization of congo red, methyl orange and methyl red was 14.7, 28.6, and 77.9 nmol/min/mg, respectively. The enzyme contained FMN as cofactor and used NADPH as the favored co-substrate. It was oxygen-insensitive, but the presence of reducing agents enhanced its activity, which is a new finding. The azoreductase expression in B. velezensis was found to be unaffected by addition of azo dyes, although azo dyes are known to induce azoreductase expression in few organisms. The enzyme was thermostable with melting temperature of 89.5°C and functioned in wide temperature range. Further, the enzyme was crystallized and its structure was solved. The structural basis of its functional attributes is discussed. In our knowledge, this is the first report on characterization of azoreductase enzyme from B. velezensis.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Mononucleotídeo de Flavina/química , NADP/química , Nitrorredutases/química , Sequência de Aminoácidos , Compostos Azo/química , Compostos Azo/metabolismo , Bacillus/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Vermelho Congo/química , Vermelho Congo/metabolismo , Cristalografia por Raios X , Mononucleotídeo de Flavina/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , NADP/metabolismo , Nitrorredutases/genética , Nitrorredutases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...